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Abstract. The feasibility of using artificial neu-
ral networks as control systems for modern, complex
aerospace vehicles is investigated via an example air-
craft control design study. The problem considered
is that of designing a controller for an integrated air-
frame /propulsion longitudinal dynamics model of a
modern fighter aircraft to provide independent con-
trol of pitch rate and airspeed responses to pilot com-
mand inputs. An explicit model-following controller
using He control design techniques is first designed
to gain insight into the control problem as well as
to provide a baseline for evaluation of the neurocon-
troller. Using the model of the desired dynamics as a
command generator, a multilayer feedforward neural
network is trained to control the vehicle model within
the physical limitations of the actuator dynamics.
This is achieved by minimizing an objective function
which is a weighted sum of tracking errors and con-
trol input commands and rates. To gain insight in the
neurocontrol, linearized representations of the neuro-
controller are analyzed along a commanded trajec-
tory. Linear robustness analysis tools are then ap-
plied to the linearized neurocontroller models and to
the baseline H,. based contraller. Future areas of
research are identified to enhance the practical appli-
cability of neural networks to flight control design.

1 Introduction. In the past few years, there
has been an increasing interest in the control com-
munity to exploit the promise of artificial peural net-
works to solve difficult control problems. However,
most of the neural network applications to control de-
sign that have appeared in the literature [1,2], either
dealt with robotic systems, or with control! problems
that are mainly of academic interest such as the in-
verted pendulum problem. Only more recently have
neural networks been applied to the control design
of more complex problems, e.g. manufacturing pro-
cess [3]. The objective of this paper is to investigate
the applicability of neural networks as controllers for
aerospace vehicles with special emphasis on piloted

flight. Towards this objective, results are presented
from a preliminary study of neurocontrol design for
an integrated airframe/propulsion model of a mod-
ern fighter aircraft for the piloted longitudinal land-
ing task. To gain insight in the characteristics of
the neurocontroller, linear analysis tools are applied
to linearized representations of the neurocontroller
and to a baseline H,, based controller. Closed loop
system performance and robustness of the neurocon-
troller are evaluated and discussed in relation to the
H, based controller. '

The paper is organized as follows. The vehicle
model and the desired closed-loop dynamics are first
discussed, and an explicit model-{sllowing Hoc based
control design is presented. The architecture used to
train the neurocontroller is then presented and the
results of the neurocontroller are evaluated. A per-
formance and robustness analysis is then presented
for the neurocontroller and the H,. based controller.

2 Vehicle Model. The vehicle model con-
sists of an integrated airframe and propulsion system
state-space representation for a modern fighter air-
craft powered by a two-spool turbofan engine and
equipped with a two-dimensional thrust-vectoring
and reversing nozzle.

The flight condition used in this application is rep-
resentative of the STOL (Short Take-off and Land-
ing) approach-to-landing task, with an airspeed of
Vo = 120 Knots, a flight path angle of 7o = -3 deg,
and a pitch attitude of 6o = 7 deg. The linearized
dynamics of the vehicle model are of the form

£ = Az + Bi,, Z=C%; 1)

where the state vector is

5= [u,w,Q,60k N2,N25,P6,T41B]" , (2)
with

u = aircraft body axis forward velocity (ft/sec)

w = aircraft body axis vertical velocity (ft/sec)



Q = aircraft pitch rate (rads/sec)

6 = pitch angle (rads)

k = altitude (ft)

N2 = engine fan speed (rpm)

N25 = core compressor speed (rpm)

P6 = engine mixing plane pressure (psia)

T{1B = engine high pressure turbine blade
temperature (°R), '

and the control input vector is

@, = [WF, 6TV); (3)
with
W F = engine main burner fuel flow rate ( lbm/hr)
§TV = nozsie thrust vectoring angle (deg).
The vehicle outputs to be controlled are

=V, QI , (4)
where V is the aircraft velocity in ft/sec, and Q is
the pitch rate in deg/s. The system matrices 4, B,
and C are available in Ref.[4]. The open-loop vehicle
eigenvalues are: '

Ay = 0.07, Az3 = —0.09% 50.23, A4 = 1.06,

As = —-1.47 — -~ Airframe modes

and

e = —1.40, A; = —3.57 ,As = —6.96,

Ao = —89.28 — — — Propulsion modes.

Note that the airframe is statically unstable with a
highly unstabie pitch mode. Open loop analysis also
indicated a strong coupling in the response of the
controlled outputs Z to control inputs i,.

The control design objective is to design a control
system that provides decoupled command tracking of
velocity and pitch rate from pilot control inputs with
aircraft responses compatible with Level I handling
qualities requirements {5]. The desired response dy-
namics are selected to be of the form

-%m = AmZm + BmispL, Zc = Cmimi (5)
with Zsgz = {VsEL, QSEL]T where Vsgr 1s the pilot
velocity command in ft/s and Qs is the pilot longi-
tudinal stick deflection in inches, and Z. = [V, QC}T,
where the subscript “c” refers to the ideal response
in V and Q with units of ft/s and deg/s respectively.
The system matrices Ay, Bn and Cr, are the state-
space representation of the ideal response transfer
functions listed in Table 1.

Table 1: Desired Response Transfer

Notation: {k(1/7)/[§;wn} =
k(s + 1/7)/(8* + 26wns + wy?)}

Ve 0.04!3.13‘ . V. _
FSIL — [0.89;0.36] ° asnx, =0.
Q — (. Qe = 35.12(05
Vsgz — ' Qsgi — Io.a_g;z.u!;

Actuator models were also used in control design

and evaluation. The fuel flow actuator was modelled
as
10 50
Cwr() = i T+ 50 ®)

with a maximum fuel flow rate |WF|maz =
10,000lbm/hr, and a rate limit |WF|mar =
20, 000ibm/hr/s. Note that the fuel flow here cor-
responds to the perturbation from the trim value for
the linear model. In this study, the value |WF| .
is therefore chosen such that the total fuel flow limit
will not be exceeded when a perturbation of 2 magni-
tude of W F ynaz is commanded. The thrust vectoring
actuator is modelled as

15
s+ 15’

Gorv(’)- = (7)

with a maximum thrust vector angle 6TV | per =
10deg, and a rate limit |§TV|,,,, = 20deg/s.

As a result, nonlinearities appear in the control de-
sign and evaluation in the form of actuators position
and rate limits. )

3 H, Control Design. Recent advances in
H. control theory [6] and computational algorithms
to solve for Ho, optimal control laws {7 have en-
abled the application of this theory to practical com-
plex multivariable control design problems. Many ex-
ample applications of Ho, based control designs for
aerospace vehicles have appeared in recent literature
[8-10]. Prior to applying a neural network approach
to control design for the example vehicle under study,
an H. based control law was obtained as a baseline
for the performance and robustness analysis of the
neurocontroller.

Within the framework of Hy optimization, the
control design problem for this example study was
formulated as the model-following problem shown in
Fig.1. The three transfer functions that are of in-
terest for such a problem are the senmsitivity func-
tion S(s), the complementary semsitivity function
T(s), and the control transmission function C(s).
These represent the transfer functions from the refer-
ence commands to tracking errors, controlled vari-
ables, and commanded control inputs respectively,
ie. &(s) = S(8)2.(s), 2(s) = T(s)Z(s) and &c(s) =



C(s)z(s). In order to be able to influence both the
low-frequency and high-frequency properties of the
closed-loop system, it is desirable to find a controller
K(s) which minimizes a weighted norm of a combi-
nation of these three transfer functions, i.e.:

Ws(jw).S(jw)
Wr(jw).T(jw)
We (j).C(jw)
| ®)
The weighting functions Ws(jw), Wr(jw) and
We(jw) are the “knobs” used by the control designer
to “tune” the controller K(s) such that the design
objectives are met. For instance, choosing Ws to
be large at low frequencies ensures good command
tracking performance, and choosing Wr to be large at
high frequencies ensures robustness to high frequency
unmodelled dynamics. We is chosen to ensure that
control actuation bandwidths, as well as rate and de-
fiection limits, are not exceeded in the control design.
For the aircraft example, the integrated design
model, P(s), in Fig.1 consisted of the vehicle model
(1) and the actuator models (6) and (7). The ideal re-
sponse model, RB(s), in Fig.1 consisted of the desired
model dynamics (5) with a high pass filter (;357) on
the pilot pitch rate command. This high pass filter
is added to reflect the fact that pitch rate cannot be
commanded in steady-state. The outputs Z and the
errors € were scaled by their approximate maximum
values 1o be commanded by the pilot with V2 = 20
ft/sec and Q% = 3 deg/sec. The sensitivity weights
Ws and the complementary sensitivity weights Wr
were chosen as listed in Table 2.

min||H(jw)lle, with H(jw) =

Table 2: Weights for H. Control Design.

Controlled Ws Wr
Variable
AV 33.50¢21000 0.225
335.01s+1 0.0022s+1
Q 6.70++1000 0.044s
67.02:+1 0.00044s

This choice of Ws and Wy was based on the per-
{ormance and robustness arguments discussed earlier.
The weights We comsisted of the control commands
and rates weighted by the inverse of actuator position
and rate limits for WF and §TV listed earlier. Note
that the combination of tracking errors € and aircraft
outputs Z is used as a controller input instead of &
and ideal response, Z., to avoid control saturation
due to large pilot inputs and undue amplification of
inadvertent pilot command noise.

The Ho control design plant as discussed above
is of 21st order consisting of the 9th order aircraft
model. 2nd order W' F actuator model, 1st order 8TV

actuator model, 5th order ideal response model, and
1st order Ws and Wr for the two controlled vari-
ables. The resulting 21st order H optimal controller
obtained using the solution algorithm of Ref.[6] was
reduced to 13th order by residualizing the high or-
der modes. The maximum eigenvalue of the reduced
order controller is |A|mez = 6.83rads/sec, which im-
plies that the controller can be implemented digitally
with reasonable sampling rates. With this reduced-
order controller, the performance results in terms of
closed-loop response, control effort and control rate
requirernents, are shown in Figs.2 and 3 for two cases
of pilot command inputs: (1) Vsgr = —20ft/s for
t>0,Qspr =0.5infor 0 < t < 3sec and Qsgr = Oin
for t > 3sec; (2) Vsgr = 20ft/s fort > 0 and QseL
same as for command input case 1. From Fig.2, we
note that for the pilot command input in case 1 the
velocity response obtained with the controller is quite
close to the ideal response, and the control input com-
mands and rates are reasonable. For the pilot com-
mand input in case 2, the pitch rate response is quite
similar to that for case 1; however, the velocity re-
sponse is degraded from the ideal response. Case 2
is demanding in that the pilot is commanding the
aircraft to pitch up as well as accelerate to 2 higher
velocity. As seen in Fig.3, the maximum fuel flow
rate is commanded by the controller for an extended
period of time in order to track the ideal response.
Note that the closed-loop system remains stable in
the presence of the actuator limits, and the aircraft
response tracks the ideal response in the steady-state.

4 Neurocontrol Design. Although the
strength of neural networks lies in their ability to
handle nonlinearities in the controlled dynamics, the
control design for a linear aircraft model is being con-
sidered in this paper to gain insight into the neu-
ral network characteristics by using linear analysis
tools. As discussed earlier, nonlinearities of concern
for practical control design, such as actuator position
and rate limits, are included in the design criteria.

The architecture for training the neurocontroller is
shown in detail in Fig.4. For each pilot selected tra-
jectory Zsg(t), a commanded trajectory Z(t) is gen-
erated from (5). Prior to training, the commanded
variables Z.(t) are discretized and scaled to Z;(tx) us-
ing the same scaling as for the Ho design. Like-
wise, the dynamics of the actuators and of the vehi-
cle model are discretized and scaled after normaliz-
ing the control input vector by its maximum value
(IW Flmaz, 6TV lmaz). As for the Ho design, the
tracking error at time t; is the error between the
scaied vehicle output vector and its desired scaled
value at the same time t;, i.e. & (k) = 22 ()= 2" (t).
However, because of the time-discretization of the ac-



tuator dynamics and vehicle model dynamics within
the training loop, a commanded control input vector
generated at time ¢ by the neurocontroller will only
affect the aircraft output at time ;2. Consequently,
the tracking error at time tx ,, defines the magnitudes
of the weights increments at time ¢;. Said in another
way, due to the time-discretization of the dynamics,
the internal representation of the neurocontroller has
to be updated at time t; on the basis of information
which will be only available at a later time tx42. To
be consistent with the time-discretized design, knowl-
edge of the anticipated commanded vehicle ouput at
time tx42, 2! (tx42), is explicitly provided to the neu-
ral network at time t; during training by means of
the commanded erroré, (tx) = Z, (tk+2) Z'(tg). This
procedure ensures that the proper action will be com-
manded by the neurocontroller at time tx to achieve
the desired tracking at time i;.; during traiming.
When operating the trained neural network in closed-
loop however, the tracking error €, (tx) will be used
as input to the neurocontroller instead of the com-
manded error & (tx) which is not available in the real
simulation because it requires knowledge of future pi-
lot command inputs. This means that the trained
neural network will be tracking the exact commanded
trajectory with a two-step time delay during simula-
tion evaluation. Since the neurocontroller operates in
the continuous time domain, this two-step time de-
lay should not adversely affect performance in closed-
loop evaluation. That such is the case was confirmed
by the closed-loop evaluation results to be presented
later.

As shown in Fig.4, the two commanded control in-
puts are calculated by a two hidden-layer feedforward
neural network with eight input units (or four pairs of
fan-out units associated to the Q and V' variables),
and two neurons in the output laver. These pairs
consist of the scaled output vector 2*(¢); the com-
manded error & (ix) between the scaled vehicle out-
put vector at time t; and its desired scaled value at
time tx43; the discrete time-derivative of the track-
ing error, é’,(t,,)- and the time-average of the track-
ing error, 1/tkf0 t)dt. As in the H, design, the
motivation behind usmg the combination of Z*(tx)
and £, (t)) as inputs to the neurocontroller, instead of

3*(t,) and Z!(tg+2), is to allow the neural network to
reconstruct the command without direct feedforward
of the command. The role of the error rates é,(tx) is
to provide the neural network with lead mformat)on,
and the time-averaged error feedback 1/t f o €:(t)dt
is to minimize the steady-siate tracking error for step
command inpur.s (The motivation behind scaling the
integral error f o €:(t)dt into its time-average was to
improve backpropagation learning by bounding the

corresponding input to the neural network. Other
alternatives would be to low-pass filter the integral
error itself, or to remove the scaling factor 1/t; from
the time-averaged error as learning takes place. Be-
cause of their potential to improve steady-state track-
ing, these latter approaches should be considered in
future neurocontro! designs.) In Fig.4, the symbol A
represents & latch that is clocked every 6t seconds to
update the inputs to the neurocontroller, the actua-
tors and the vehicle model. A network configuration
of 15 neurons in the first hidden layer, and 10 neurons
in the second hidden layer, is chosen for the neuro-
controller. Each neuron of the neurocontroller has
the activation function:

(9)

which limits its output y to the interval [-1, +1] for
any input signal z. For a given set of weights of
the neural network, the two output neurons yield the
normalized commmanded control input vector

y = tanh(z);

ers 1 WF. sTv, T
elte) = [ F e 6TV imar)

(10)

which is applied to the scaled actuators. After a small
time-interval 6t = x4y — tx, the actuators yield the
normalized actuator control output vector @} (ti+:)
as cefined by (6) and (7). The normalized actuator
control output vector i%(tx4+1) is subsequently ap-
plied as input to the scaled vehicle model over the
time-interval [tx.1,fx42], and changes the state vec-
tor of the vehicle model from Z(tr+1) to Z(tk+2). In
order to maximize the tracking performance while
minimizing the costs associated with high control ef-
fort and high control rate requirements, the neural
network is trained to minimize an objective function
that includes tracking errors, control effort and con-
trol rate requirements
1y L
J(t) = 5(& (te+2)-PEe(trs2) +
T (tes) Bl (tesn) )
(11)
where €, (tx+2) is the error between the scaled com-
manded vector Z!(t;..;) and the scaled vehicle output
#*(tx4+2). The matrices p, ) and [ are 2x2 diago-
nal matrices whose coefficients car be adapted so as
to modify the characteristics of the neurocontroller
in order to achieve a practical performance/control-
effort trade-off. Expression (11) is of the same form
as the objective function used in Ref.[11] to design
a neurocontroller for the same airframe/propuision
system, but without simulating the actuator dynam-
ics within the training loop. In Ref.[11}, it was found

T(tegr) A G4(ter) + fig



that training the neural network to minimize only the
tracking error led to high control effort and high con-
trol rate requirements. When the actuator dynamics
were included in the closed-loop evaluation, this re-
sulted in a highly oscillatory pitch rate response and
a limit cycle behavior in velocity/fuel-flow response.
However, a satisfactory trade-off between tracking
performance and control effort could be achieved with
finite values of A and fi. Since the bandwidth limiting
effect of the actuators is now explicitly taken into ac-
count within the training loop, much improvement in
performance/control-effort trade-off is expected from
the minimization of (11).

The backpropagation algorithm [12] was used to
find the set of weights of the neurocontroller which
minirmnize the objective function (11) over the set of
pilot input commands. In order to backpropagate
(11), a single layer feedforward neural network (per-
ceptron) was used in place of the vehicle model in the
training architecture of Fig.4. This neural network
emulator had 11 input units (corresponding to the
two normalized actuator control outputs and to the
nine state variables of the vehicle model), and 9 lin-
ear output neurons {corresponding to the nine state
variables of the vehicle model). Likewise, two feedfor-
ward neural networks were used to emulate the dis-
cretized dynamics of the actuators. The second-order
dynamics of the fuel filow actuator were simulated by
a three-layer network of linear and linear-thresholding
neurons. As shown in Fig.5, constraining fuel flow ef-
fort and fuel flow rate requirements is achieved by
thresholding the linear neurons of the two last lay-
ers. The first-order dynamics of the thrust vectoring
actuator were simulated by the two-layer neural net-
work shown in Fig.6. Constraining the effort and
rate requirements of the thrust vectoring actuator is
achieved by means of linear-thresnolding neurons.

The layers of an (N -+ 1)-layer neural network can
be labeled by an index p from 0 to N, p = 0 de-
noting the input layer. Layer p has v(p) elements
consisting of {v(p) — 1] neurons and one unit that is
permanently “on” and used to define the thresholds
of the neurons of the (p + 1)"‘ layver. With symmet-
ric activation functions of the type (9), the threshold
of a neuron is defined as the value of its input signal
above which its output is positive, and below which
its output is negative. During training, the thresh-
olds are updated with backpropagation in 2 manner
similar to the updating of the weights [12].

The weight connecting the i** neuron of the pth
layer to the j** neuron of the (p+ 1)”‘ layer is
denoted as wj (p41)ip- LhE threshold of the j**

neuron of the (p+ 1)”' layer thus corresponds to

Wy (p+1)w(p)p- FOT 2 single feedforward pass of the

neural network, a weight increment is given by

(12)

where o is the steepest descent coefficient, o0, is
the output of the i** neuron of the p** layer, and
A, (p+1) is the effective error at the output of the
#** neuron of the (p + l)m layer. The effective errors
Ay (p+2) in the (p+ 2)“‘ layer are backpropagated to
the (p+ 1)** hidden layer to give the effective errors
in the (p+ 1)"‘ layer, as

bwj (p41)ip = a0; pAj (p+1)

B p+1) = F1(Z5(p41)) X Sji(p+1)
with
(13)

and where f1(2; (p+1)) is the value of the derivative of
the neural activation function for an input z; (5,1 of
the j* neuron of the (p+ 1)"l layer. In the output
layer, the effective errors A, n are the gradients of
the objective function (11)

2
Sip+1) = [2:2; )Ak,(r+2)wk~(r+2)dv(r+1)]

‘N = JHZ, —

An=f (z"”)ao,,n (14)
Whenever the neural activation is not differentiable
over the range of ]l possible neuron input values (as
is the case for the linear-thresholding neurons used for
emulating the actuators), f/ should be constructed to
preserve the characteristics of a monotonous contin-
uous function. For example, the linear-thresholding
activation function which is defined as

fun(z) ==z if [zi< 1,

fun(z)=1 if 221,
fun(z)= -1 if e < -1. (15)

is clearly not differentiable over [—oo,+00]. Since
fuen is piecewise differentiable, it would seem a-priori
natural to define fia! as fun/(z) = 1if {z] < 1, and
funt(z) = 0if |z} > 1. With this definition of fin!
however, any time a neuron input zo would take a
value outside of [-1, +1] during training, the neuron
output would remain trapped to 1, if zo > 1, or -1, if
zo < —1. For such neuron input values, the weights
of the incoming connections would remain frozen, and
this would bias the learning. In order to permit the
neurons full access to the output state space during
training, fin! is thus defined as

flth’(zi,r) =1 1if lzt\p‘ <1l or if :c,v,,,.S.',, < 0,

(16)

fuh'(zg,,,') = 0 otherwise.



which will ensure that the weights be properly in-
cremented during training. S,, which appears in
(16) is defined in (13). The serial arrangement of the
neurocontroller, the neuro-emulator of the actuators,
and the neuroc-emulator of the vehicle model, consti-
tutes a larger neural network through which the ob-
jective function (11), J(tx), can be backpropagated
through time {2] using Eqgs.{13)-(16). The connec-
tions between neurocontrollers and neuro-emulators
which were used as backpropagating channels are in-
dicated in Fig.7 over a period of three time-steps 6t,
and the weights increments are calculated using (12).

The commanded trajectories used to train the
neural network were generated as follows. The pi-
lot selected pitch rate was a doublet centered at a
time t. between 2.5s and 5s, with the characteris-
tics: Qsgr(t) = Qo for t < te; QseL(t) = —Qo
for 2t > t > t.; Qsgr(t) = 0 for t > 2t.. Note
that Qsgy corresponds to pilot longitudinal stick de-
flection with units in inches. The pilot selected air-
frame velocity was a step function characterized by
Vspr(t)=0fort <0 and Vsgp(t) = Vo fort > 0.
The maximum intensities |Qo] and |Vp| of the ran-
domly selected input commands were bounded by
Qmaz = 0.5 in and Vinez = 20 ft/s. This maxi-
mum value of Qs corresponds to a maximum pitch
rate command of about 3 deg/sec. Random sets
of input trajectories were generated from uniform
distributions of Qo, tc and Vo over [—Qmaz) Qmaz),
[2.5s,5s) and ‘—Vinaz, Vimas] respectively. The com-
manded variables Q.(t) and V.(t) were filtered from
Qser(t) and Vegpr(t) over a period of 12s with a
time-step 6t = 0.02s. These types of commanded
trajectories represent typical pilot command inputs.

Training was performed in two phases. In the
gross-tuning pnase of the training, a set of 4000 com-
manded trajectories was randomly generated, and the
synaptic weights were updated at every time tx = két
after backpropagating J(tx)through the neural net-
work. This was done once for each trajectory of the
training data set with a steepest-descent coefficient

= 0.001. In the fine-tuning phase of the train-
ing, the synaptic weights were updated following a
moving-window scheme: at every time i, the weights
were incremented after backpropagating through the
neural network the time-integral of the objective
function calculated over n, sampled points or dur-
ing a period of n, .6t seconds, i.e. 3 ;= J(tksi). As
the width of the moving window was progressively in-
creased to cover an entire commanded trajectory, i.e.
ne = 12sec/0.02sec = 600, the sieepest descent co-
efficient a was progressively reduced from the initial
value of 0.001 to 0.0001. In total, the neurocontroller
was trained with approximately 10,000 commanded

trajectories.

5 Neurocontrol Performance. The eval-
uation architecture of the neurocontroller in closed-
loop is shown in Figure 8. The neurocontroller was
tested on step pitch rate input commands, different
from the doublets used in training. The input com-
mands chosen to illustrate the neurocontrol perfor-
mance were defined by the step pitch rate command
Qser(t) = 0.5in for ¢ < 3sec, @ser(t) = 0 for
t > 3sec; applied simultaneously with one of the fol-
lowing classes of step velocity commands: Vsgr(t >
0) = -20ft/sec (case 1); Vsgr(t > 0) = 20ft/sec
(case 2).

When training the neural network without giving
any consideration to the cost associated with la.rge
control efforis and large control rates, i.e. A= =
in Eq.(11), the neurocontroller learns very satisfac-
torily to track the commanded outputs. However,
the fuel flow is quite irregular, and both control in-
put commands generated by the neurocontroller ride
the actuator rate limits. A study of the trade-off
between tracking performance and control effort re-
quirement was conducted by training the neural net-
work with A and i of the form I= diag[AwrF, AsTv]
and © = diag{uwr, psrv], With the same training
characteristics and the same matrix elements of 7
used earlier. Asin Ref.[11], the tracking error is found
to actually decrease for small ircreases in values of b
and Z.

The results from this trade-off study are shown in
Figs.9-10 for cases 1 and 2 with the choice of param-
eters p = diag[py,pg) = diag[2000,20], A = 0.01,
u = 0.1. The pitch rate response follows the com-
manded trajectory very smoothly, in spite of the
thrust vectoring requirement £TV reaching the ac-
tuator rate limit at the initiation and end of the
command. However, within the proposed training
scheme, any attempt to lower the rate of thrust vec-
toring by increasing psrv resulted in a loss of track-
ing performance. In case 1, neurocontrol is very sat-
isfactory both in pitch rate and velocity response. In
case 2, neurocontrol tracking is still very satisfactory
in pitch rate response, but is slightly less satisfactory
in velocity response owing to the physically demand-
ing effort of increasing simultaneously aircraft speed
and pitch angle.

In order to estimate the effect of providing the
neurocontroller with lead information during train-
ing, the above process was repeated without feed-
ing the discrete time-derivatives of the tracking er-
ror, i.e. &,(tx), to the neural network during train-
ing. Without constraining control efforts and rates
(A =p= 0) the tracking performance deteriorated
significantly with the appearance of some ringing in



the pitch rate response and a limit cycle behavior in
the velocity/fuel-flow response. The fuel flow require-
ment and fuel flow rate were both much more oscilla-
tory than when lead information was provided to the
neurocontroller during training. The fuel flow rate
oscillated between the maximum and minimum rate
limit during and beyond the 12 sec training period. A
more oscillatory behavior was also noted for the con-
trol effort and rate of the thrust vectoring. However,
the situation improved significantly when constraints
on contro)] efforts and rates were applied during train-
ing. In this case, a satisfactory trade-off between
performance and control-effort was reached for 1
ues of A and fi in the vicinity of Awr = Agrv = 0.02,
pwr = 0.2 and psrv = 1.0. The results showed
a similar velocity/fuel-flow response with and with-
out lead information, but showed a noticeable degra-
dation in the pitch-rate/thrust-vectoring response in
comparison to the situation where lead information
was provided to the neurocontroller. This degrada-
tion in tracking performance resulted from the large
value of the pitch rate constraint psrv (one order
of magnitude iarger than before), which was needed
to decrease the tracking overshoots. In summary,
lead information enabled the neurocontroller to over-
come ringing and limit cycle behavior while increas-
ing tracking performance. Thus, within the present
scheme of neural computation, any dynamic char-
acteristics required to achieve desirable performance
had to be incorporated into the neural network with
an appropriate choice of inputs. An extension of the
present neurai architecture to generate such dynamic
characteristics could be a feedforwerd neural network
with intermediai: feedback inputs. i.e. 2 recurrent
neural architecture as a dynamic neurocontroller.

6 Analysis of the Controllers. From
a comparison of the closed-loop response for the
two command cases with the Hy based reduced or-
der controller (Figs.2 and 3) and the neurocontroller
(Figs.9 and 10), it is evident that the neurocontroller
provides improved command tracking although at the
expense of increased control rate activity, both for
5TV and WF. Also the pitch vectoring control re-
quirements are higher and the fuel flow activity ex-
hibits oscillatory behavior for the neurocontroller.

Note that the results presented so far have been
with the nominal vehicle model used for control de-
sign. Since this model is only a simplified version
of the vehicle dynamics, an important criterion for
design of controllers for flight vehicles is that of ro-
bustness. Robustness is defined here as maintaining
performance and stability in the presence of uncer-
tainties associated with the modelling process. Mod-
elling uncertainties are due to neglected high order

val-

dynamics. parameter changes due to change in flight
conditions and the margin of error associated with es-
timating model parameters based on analytical tools
and experimental data. A classic specification for ro-
bustness, also used in the military specifications for
design of flight control systems [5], is that of stability
margins, specifically gain and phase margin [14). The
tools to determine these margins are fairly well devel-
oped for linear systems - classical Bode analysis for
single-input single-output systems [14] and modern
singular value and structured singular value analysis
for multi-input multi-output systems [15, 16]. For
nonlinear systems, one way to determine robustness
is to conduct Monte Carlo type simulations using all
possible combinations of modelling uncertainties that
can be expected. Another approach is to linearize the
closed-loop system at various points along a given tra-
jectory and then apply the linear analysis tools. The
latter approach is less time consuming and provides
more insight into the characteristics of the nonlinear
system. Furthermore, this latter approach allows to
perform a similar analysis for the linear H, based
reduced order controller and the nonlinear neurocon-
troller, for small perturbations along a given trajec-
tory. ]

Since the vehicle model used in this analysis is
linear, only linear small perturbation models of the
neurocontroller at different points along a given tra-
jectory are needed to perform the type of robust-
ness analvsis discussed earlier. Considering the closed
loop system response with the neurocontroller for the
case 2 command inputs, corresponding to the results
presented in Fig.10, the linear neurocontroller models
were generated at times ¢ = 0.5, 2, 4,6,8 and 10 secs.
The first three points in time correspond to tran-
sient control activity whereas the last three represent
steady-state type command tracking with monoton-
ically decreasing tracking error. Note that the neu-
rocontroller as shown in Fig.8 consists of 4 sets of
scaled (normalized) inputs: the time-averaged errors
l/tf:)é(t)dt, the error rates é,(t), the errors &(t) and
the controlled outputs z*(t). The scaling, the time-
averaged error and derivative action were embedded
within the neurocontroller during the linearization
process to find a control structure consistent with
the structure of the Ho based controller which has
only the errors (£) and the controlled outputs (2) as
the inputs. The frequency response Bode plots of
the linearized neurocontroller models were obtained
to gain insight into the cbaracteristics of the control
action. Bode gain plots for the thrust vectoring angle
(6TV) response to all the inputs to the controller lin-
earized at t = 0.5sec are shown in Fig.11. The Bode
gain plots for the Ho based controller are shown in



Fig.12. Ap example variation in the neurocontroller
characteristics with the change in magnitude of the
inputs to the controller along the trajectory is shown
in Fig.13 in terms of the Bode gain plots for pitch rate
error (eq) to thrust vectoring angle (6TV) response.
Fig.13 shows that the neurocontroller gains decrease
with time. This type of behavior was exhibited by all
the other input/output Bode plots of the linearized
neurocontroller models. So in effect, the neurocon-
troller can be thought of as a set of linear controllers
with the controller parameters being a strong func-
tion of the magnitude and direction (relative magni-
tude) of the inputs to the controller. Note that since
the Ho based controller is linear, its dynamics are
independent of the magnitudes of the controller in-
puts.

From Fig.11 we note that the neurocontroller ex-
hibits PID (Proportional + Integral + Derivative)
control type behavior from the error inputs (ev and
eq) to the thrust vectoring angle (§TV') output. This
was also the case for the ey and eg to WF response,
and was true all along the trajectory as shown par-
tially (for eg input) by the plots in Fig.13. This dy-
namic behavior of the neurocontroller for the error
inputs is directly due to allowing feedback of the in-
tegral and derivative errors. Since no such dynamics
were added to feedback of V and Q to the neurocon-
troller, the neurocontrolier exhibits only proportional
type behavior from these inputs.

Comparing Figs.11 and 12, we first note that the
magnitude of the ey and eg to §TV response is much
lower for the H.. based controller compared to the
particular linearized neurocontroller models. This
was also true for the error infuts to WF response.
This result is a further confirmation that the con-
trol effort and control rate requirements to track a
given set of commands will be higher for the neuro-
controller. Although the dvnamic behavior of the H
based controller is more complex than the neurocon-
troller, some integral and derivative action is evident
in the eg to §TV response. The integral action was
built into the H based controller through the choice
of the sensitivity weighting, however, unlike for the
neurocontrol design the error rate information was
not explicitly provided in the Hy controller. The Hu
control synthesis procedure is such that it naturally
builds in the amount of iead (error rate) information
into the controller that is necessary to meet the con-
trol design objectives specified through the weighted
quantities. As evident from Figs.11 and 12, the H
based controller provides lead at a lower frequency in
the eg to 6TV response as compared to the linearized
neurocontroller.

Another difference between the H,. based con-

troller and the neurocontroller is the compensation
from the measurements of the controlled plant out-
puts (V and Q) to the control inputs (WF and §TV).
As mentioned earlier, this compensation is a “con-
stant” (varying with input magnitude) gain from
the controller inputs to outputs for the linearized
neurocontroller. However, as seen from Fig.12, the
H, based controller has dynamics associated with
this part of the control compensation and also has
higher compensation gains than the linearized neu-
rocontroller (Fig.11). The controller structure used
for the H,, and the neurocontrol design is consis-
tent with the classical approach of flight control de-
sign wherein an inner loop compensation (2 — @)
is designed first to provide stability augmentation
and place the augmented plant dynamics within the
handling qualities specifications; and then the outer
loop compensation (¢ — #@) is designed to provide
decouplied command tracking to reduce pilot work-
load. The significance of the difference between the
H, based controller and neurocontroller “inner loop”
compensation was studied further by considering fail-
ures in the outer compensation loops, i.e failure in
the error sensors. Eigenvalue analysis showed that
the closed-loop system with H.. based controller will
remain stable for failures in any or both of the error
sensor ioops whereas the closed-loop system with the
neurocontrolier linearized at ¢ = 0.05 sec was unsta-
ble for failure in either or both of the error loops. The
response of the closed-loop system for case 2 com-
mands and failure in the eg loop is shown in Fig.14
for both the H.. based controller and the nonlinear
neurocontroller. The H based controller still tracks
the velocity command and provides stable response in
pitch rate whereas the neurocontroller gives a highly
unstable response. So the H,, based conmtroller is
using the plant measurements (Z) in a manner con-
sistent with the classical idea of providing inner loop
plant augmentation. How to formulate the neurocon-
trol design problem such that the resulting controller
exploits the plant measurement information to pro-
vide inner loop stability augmentation is an area of
future research.

Stability margin analysis was performed for the lin-
earized neurocontroller models and the H, based
controller to quantify robustness of the control de-
signs. Among the linearized neurocontroller models,
stability margins were worst for the one linearized
around t = 0.05 sec, so only those results are dis-
cussed here. Structured singular value analysis [17]
showed that the H. based controller has guaranteed
multivariable gain margins of -3.7 to 6.6 dB (gain fac-
tor of 0.65 to 2.1) and phase margins of =30 deg for
simultaneous loop gain or phase changes at the plant



output (V and Q) and margins of -3.8 to 7.2 dB and
+32.5 deg at the plant input (WF and 6TV). For the
linearized neurocontroller, these multivariable mar-
gins were only -0.6 to 0.6 dB and +3.4 deg for loop
gain variations at the plant output, and -0.9 to 1.1
dB and =6.6 deg at the plant input. The low stabil-
ity margins with the neurocontroller are indicative of
poor robustness in that the closed loop system might
be unstable for small uncertainties in the plant dy-
namics. Since the multivariable margins can some-
times be conservative, the stability robustness of the
closed-loop system was further evaluated using the
more classical approach of “breaking” one loop at a
time, i.c. one loop open and other loops closed. This
one-loop-at-a-time analysis confirmed the poor stabil-
ity margins of the neurocontroller. The closed-loop
response of the system with the He based controller
and the nonlinear neurocontroller for an added delay
of 74 = 0.05 sec in the two control channels (WF
and éTV) is shown in Fig.15. This value of 74 cor-
responds to a phase loss of 8 deg at a frequency of 3
rads/sec, which is the frequency that corresponds to
the guaranteed multivariable phase margin of 6.6 deg
for the linearized neurocontroller, and it is quite rep-
resentative of the kinds of time delays to be expected
in practical implementation of compiex flight control
designs. From Fig.15 we note that the H, based
control shows very little degradation in tracking per-
formance in the presence of time delay, whereas the
neurocontroller exhibits limit cycle behavior in the
pitch controlled variable. A factor that may con-
tribute to this lack of robustness is the fact that the
neuro-command rides the thrust vectoring rate limit
during initial and final transients. In contrast, the
neuro-command is well below the fue] fiow rate limit,
which results in robust velocity tracking in the pres-
ence of time-delay. Improving phase robustness char-
acteristics of neurocontrollers and investigating their
gain robustness characteristics are areas that warrant
further study.

In the neurocontrol design, the weights of the neu-
ral network (the internal representation of the neu-
rocontroller) were chosen to minimize the objective
function (11) over an exhaustive set of pilot input
commands to the nominal vehicle model by using
the backpropagation algorithm. No information on
modelling uncertainties and no constraint on “off-
pominal” actuator dynamics were provided to the
neura! network during training. Without any con-
straint other than control eflort and rate limits, the
trained neural network learned to control the nominal
vehicle model as efficiently as possible (and within the
resolution of backpropagation). Consequently, the ro-
bustness of the neurocontroller as trained in section 4

is mostly subject to the generalization ability of the
backpropagation algorithm (in the present context,
generalizing means providing stable control for “off-
nominal” vehicle model dynamics that were not used
during training). Because backpropagation is known
in general to have a limited ability to generalige [18],
the robustness of the neurocontroller as trained in
section 4 could kave been expected to be quite lim-
ited.

Within the neural architecture of Fig.4, one possi-
ble approach to enhance the robustness of the neu-
rocontroller may be to include all modelling uncer-
tainties in the training data set. Another possibility
might be to modify the objective function (11) used to
train the neurocontroller to reflect some of the char-
acteristics of the functional (8) which is minimized in
the Ho based control design.

7 Conclusions. The applicability of neu-
ral networks for flight control design was analyzed
through the process of designing a model-following
neurocontroller for the example of an integrated air-
frame/propulsion model of a modern fighter aircraft
for the piloted longitudinal landing task. For this
two control inputs - two control outputs example,
the control design problem was set up as the task of
following the trajectories generated from a model of
the desired vehicle response dynamics to pilot com-
mand inputs. The neurocontroller was trained by
simulating the non-linear dynamics of the actuators
including position and rate limits. The choice of the
objective function and its minimization over entire
commanded trajectories were found to be critical to
the neurocontrol design. A satisfactory trade-off be-
tween tracking performance and control effort could
be achieved by an appropriate selection of the weights
of the objective function.

The neurocontroller shows better performance
than a baseline H.. based controller designed for the
same command tracking problem. However, the neu-
rocontroller commands larger control rates than the
H,. based controller, specially for thrust vectoring
where the neuro-command rides the thrust vectoring
rate limit during initial and final transients. The pos-
sibility of improving the practicality of the proposed
neurocontrol design methodology, to prevent neuro-
commands from riding actuator rate limits without
significant degradation of tracking performance, is
currently being investigated in light of the results
from the minimization of the H. based control de-
sign.

To gain further insight into the neurocontroller
characteristics, linearized small perturbation repre-
sentations of the neurocontroller were obtained at
different time points along a trajectory correspond-



ing to a demanding set of tracking commands. A lin-
ear analysis of these linearized neurocontroller models
and the Ho based controller showed some differences
in the controller characteristics. The major difference
between the two controllers is that the H,, based
controller is a2 “fixed” dynamic controller whose dy-
namics are “automatically” determined through the
synthesis procedure such that the specified criterion is
met in the best possible manner, whereas the neuro-
controller is an input-output mapping which is highly
dependent on the magnitude and direction of the in-
puts and any desired dynamic characteristics have to
be built into the neurocontroller by appropriate selec-
tion of inputs. For instance, both the Ho, based con-
troller and the neurocontroller have lead characteris-
tics (rate feedback) from the tracking error measure-
ments to the control commands; however, the lead
characteristic was a result of the synthesis procedure
for the Ho based controller which used only errors as
inputs, whereas for the neurocontroller this lead char-
acteristic couid be obtained only by providing error
rate as expiicit inputs (measurements). Developing
neurocontrol design methodologies that can synthe-
sige the dynamics needed by the neurocontroller to
achieve the desired performance is an area of future
tesearch. A possible approach may lie in the use of
recurrent neural architectures.

Linear stability robustness analysis tools were ap-
plied to the linearized neurocontroller models and to
the baseline Ho based controller. These analysis
tools showed that the neurocontroller will have very
poor stability margins as compared to the Hoo based
controller. The poor phase margins for the neuro-
controller were confirmed in simulation wherein time
delays of 0.03 sec in both control channels resulted in
a limit cycie pitch response with the neurocontroller,
while there was little performance degradation with
the Ho based controller. Since the issue of robust-
ness is critical to practical implementation of flight
control systems, a future area of research is to de-
velop methodologies for the synthesis of robust neu-
rocontrollers. and tools to analyze their robustness.
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